Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate.

نویسندگان

  • E H Bresnick
  • S John
  • D S Berard
  • P LeFebvre
  • G L Hager
چکیده

Our laboratory has previously developed cell lines derived from mouse NIH 3T3 fibroblasts and C127 mammary tumor cells that stably express mouse mammary tumor virus (MMTV) long terminal repeat fusion genes in bovine papillomavirus-based episomes. Glucocorticoid hormone strongly activates transcription from episomes and induces the disruption of a single nucleosome in an array of phased nucleosomes on the MMTV promoter. Sodium butyrate inhibits the glucocorticoid hormone-dependent development of a nuclease-hypersensitive site that is due to the displacement of this nucleosome, and inhibits induction of RNA transcripts from episomes. Saturation binding studies show that butyrate treatment does not significantly affect the amount or the hormone-binding affinity of the glucocorticoid receptor. In a transient transfection assay, glucocorticoid hormone can activate transcription from a MMTV long terminal repeat-driven luciferase gene construct equivalently in untreated and butyrate-treated cells, indicating that the soluble factors necessary for transactivation of the MMTV promoter are unaffected by butyrate. The differential effect of butyrate on the induction of stable chromatin templates and transiently expressed plasmids suggests that butyrate prevents nucleosome displacement and represses transcription by inducing a modification of chromatin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure.

The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chr...

متن کامل

Inhibition of chromatin assembly in Xenopus oocytes correlates with derepression of the mouse mammary tumor virus promoter.

The mouse mammary tumor virus (MMTV) promoter is positively regulated by glucocorticoid hormone via binding of glucocorticoid receptor to a specific response element. Upon addition of hormone, a nucleosome containing the glucocorticoid response element is removed or structurally altered, suggesting that the nucleosome interferes with transcription. Accordingly, inhibition of chromatin assembly ...

متن کامل

Hormone activation induces nucleosome positioning in vivo.

The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishme...

متن کامل

Glucocorticoid receptor DNA-binding specificity is increased by the organization of DNA in nucleosomes.

A DNA fragment containing glucocorticoid receptor binding sites in the mouse mammary tumor virus promoter was reconstituted in vitro with histones to form nucleosome cores, which become positioned on the DNA fragment in a sequence-specific manner. Glucocorticoid receptor binding to specific DNA sequences was analyzed by quantitative DNase I footprinting. The receptor interacted with surprisingl...

متن کامل

Hormone-induced nucleosome positioning in the MMTV promoter is reversible.

The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone via the glucocorticoid receptor (GR). The hormone-triggered effects on MMTV transcription and chromatin structure were studied in Xenopus oocytes. We previously showed that the nucleosomes organizing the MMTV promoter became translationally positioned upon hormone induction. A single GR-binding site was necessary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 10  شماره 

صفحات  -

تاریخ انتشار 1990